Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Biotechnol ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2237630

ABSTRACT

Studying viral-host protein-protein interactions can facilitate the discovery of therapies for viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of 739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners between published datasets and of genes differentially expressed in samples from COVID-19 patients. We identify an interaction between the viral protein ORF3a and the human transcription factor ZNF579, illustrating a direct viral impact on host transcription. We perform network-based screens of >2,900 FDA-approved or investigational drugs and identify 23 with significant network proximity to SARS-CoV-2 host factors. One of these drugs, carvedilol, shows clinical benefits for COVID-19 patients in an electronic health records analysis and antiviral properties in a human lung cell line infected with SARS-CoV-2. Our study demonstrates the value of network systems biology to understand human-virus interactions and provides hits for further research on COVID-19 therapeutics.

2.
Am Heart J Plus ; 132022 Jan.
Article in English | MEDLINE | ID: covidwho-1663367

ABSTRACT

Study objective: A multi-institutional interdisciplinary team was created to develop a research group focused on leveraging artificial intelligence and informatics for cardio-oncology patients. Cardio-oncology is an emerging medical field dedicated to prevention, screening, and management of adverse cardiovascular effects of cancer/ cancer therapies. Cardiovascular disease is a leading cause of death in cancer survivors. Cardiovascular risk in these patients is higher than in the general population. However, prediction and prevention of adverse cardiovascular events in individuals with a history of cancer/cancer treatment is challenging. Thus, establishing an interdisciplinary team to create cardiovascular risk stratification clinical decision aids for integration into electronic health records for oncology patients was considered crucial. Design/setting/participants: Core team members from the Medical College of Wisconsin (MCW), University of Wisconsin-Milwaukee (UWM), and Milwaukee School of Engineering (MSOE), and additional members from Cleveland Clinic, Mayo Clinic, and other institutions have joined forces to apply high-performance computing in cardio-oncology. Results: The team is comprised of clinicians and researchers from relevant complementary and synergistic fields relevant to this work. The team has built an epidemiological cohort of ~5000 cancer survivors that will serve as a database for interdisciplinary multi-institutional artificial intelligence projects. Conclusion: Lessons learned from establishing this team, as well as initial findings from the epidemiology cohort, are presented. Barriers have been broken down to form a multi-institutional interdisciplinary team for health informatics research in cardio-oncology. A database of cancer survivors has been created collaboratively by the team and provides initial insight into cardiovascular outcomes and comorbidities in this population.

3.
Aging Cell ; 21(2): e13544, 2022 02.
Article in English | MEDLINE | ID: covidwho-1621824

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID-19 incidence and severity as a function of age. Our analysis leveraged age-specific COVID-19 mortality and laboratory testing from a large COVID-19 registry, along with epidemiological data of ~3.4 million individuals, large-scale deep immune cell profiling data, and single-cell RNA-sequencing data from aged COVID-19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C-reactive protein, D-dimer, and neutrophil-lymphocyte ratio) are significantly associated with age-specific COVID-19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID-19 patients. Older individuals with severe COVID-19 displayed type I and II interferon deficiencies, which is correlated with SARS-CoV-2 viral load. Elevated expression of SARS-CoV-2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID-19 in aged individuals. Mechanistically, we identified strong TGF-beta-mediated immune-epithelial cell interactions (i.e., secretory-non-resident macrophages) in aged individuals with critical COVID-19. Taken together, our findings point to immuno-inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID-19 patients.


Subject(s)
Aging , COVID-19/immunology , COVID-19/physiopathology , Inflammation , Severity of Illness Index , Adolescent , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Communication , Epithelial Cells/immunology , Female , Humans , Immune System , Interferons/metabolism , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Nasal Mucosa/virology , Odds Ratio , RNA-Seq , Registries , SARS-CoV-2 , Viral Load , Young Adult
4.
Signal Transduct Target Ther ; 6(1): 292, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333904

ABSTRACT

Sex differences in the susceptibility of SARS-CoV-2 infection and severity have been controversial, and the underlying mechanisms of COVID-19 in a sex-specific manner remain understudied. Here we inspected sex differences in SARS-CoV-2 infection, hospitalization, admission to the intensive care unit (ICU), sera inflammatory biomarker profiling, and single-cell RNA-sequencing (scRNA-seq) profiles across nasal, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with varying degrees of disease severities. Our propensity score-matching observations revealed that male individuals have a 29% elevated likelihood of SARS-CoV-2 positivity, with a hazard ratio (HR) 1.32 (95% confidence interval [CI] 1.18-1.48) for hospitalization and HR 1.51 (95% CI 1.24-1.84) for admission to ICU. Sera from male patients at hospital admission had elevated neutrophil-lymphocyte ratio and elevated expression of inflammatory markers (C-reactive protein and procalcitonin). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN, and NRP1, have elevated expression in nasal squamous cells from male individuals with moderate and severe COVID-19. We observed male-biased transcriptional activation in SARS-CoV-2-infected macrophages from BALF and sputum samples, which offers potential molecular mechanism for sex-biased susceptibility to viral infection. Cell-cell interaction network analysis reveals potential epithelium-immune cell interactions and immune vulnerability underlying male-elevated disease severity and mortality in COVID-19. Mechanistically, monocyte-elevated expression of Toll-like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. In summary, these findings provide basis to decipher immune responses underlying sex differences and designing sex-specific targeted interventions and patient care for COVID-19.


Subject(s)
COVID-19/immunology , Cell Communication/immunology , Leukocytes, Mononuclear/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Sex Characteristics , Adult , Aged , COVID-19/pathology , Female , Humans , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Nasal Mucosa/pathology , Single-Cell Analysis
5.
Alzheimers Res Ther ; 13(1): 110, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262514

ABSTRACT

BACKGROUND: Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive and therapeutic interventions. METHODS: In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimer's disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. RESULTS: We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Overall, individuals with the AD risk allele APOE E4/E4 displayed reduced expression of antiviral defense genes compared to APOE E3/E3 individuals. CONCLUSION: Our results suggest significant mechanistic overlap between AD and COVID-19, centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions, although causal relationship and mechanistic pathways between COVID-19 and AD need future investigations.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Alzheimer Disease/genetics , Brain , Endothelial Cells , Humans , Membrane Proteins , RNA-Binding Proteins , SARS-CoV-2
6.
J Biomol Struct Dyn ; 40(15): 7099-7113, 2022 09.
Article in English | MEDLINE | ID: covidwho-1124442

ABSTRACT

The ongoing global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus which leads to Coronavirus Disease 2019 (COVID-19) has impacted not only the health of people everywhere, but the economy in nations across the world. While vaccine candidates and therapeutics are currently undergoing clinical trials, there is a lack of proven effective treatments or cures for COVID-19. In this study, we have presented a synergistic computational platform, including molecular dynamics simulations and immunoinformatics techniques, to rationally design a multi-epitope vaccine candidate for COVID-19. This platform combines epitopes across Linear B Lymphocytes (LBL), Cytotoxic T Lymphocytes (CTL) and Helper T Lymphocytes (HTL) derived from both mutant and wild-type spike glycoproteins from SARS-CoV-2 with diverse protein conformations. In addition, this vaccine construct also takes the considerable glycan shield of the spike glycoprotein into account, which protects it from immune response. We have identified a vaccine candidate (a 35.9 kDa protein), named COVCCF, which is composed of 5 LBL, 6 HTL, and 6 CTL epitopes from the spike glycoprotein of SARS-CoV-2. Using multi-dose immune simulations, COVCCF induces elevated levels of immunoglobulin activity (IgM, IgG1, IgG2), and induces strong responses from B lymphocytes, CD4 T-helper lymphocytes, and CD8 T-cytotoxic lymphocytes. COVCCF induces cytokines important to innate immunity, including IFN-γ, IL4, and IL10. Additionally, COVCCF has ideal pharmacokinetic properties and low immune-related toxicities. In summary, this study provides a powerful, computational vaccine design platform for rapid development of vaccine candidates (including COVCCF) for effective prevention of COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Glycoproteins , Humans , Molecular Docking Simulation , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Front Neurosci ; 15: 606926, 2021.
Article in English | MEDLINE | ID: covidwho-1102486

ABSTRACT

The clinical characteristics and biological effects on the nervous system of infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain poorly understood. The aim of this study is to advance epidemiological and mechanistic understanding of the neurological manifestations of coronavirus disease 2019 (COVID-19) using stroke as a case study. In this study, we performed a meta-analysis of clinical studies reporting stroke history, intensive inflammatory response, and procoagulant state C-reactive protein (CRP), Procalcitonin (PCT), and coagulation indicator (D-dimer) in patients with COVID-19. Via network-based analysis of SARS-CoV-2 host genes and stroke-associated genes in the human protein-protein interactome, we inspected the underlying inflammatory mechanisms between COVID-19 and stroke. Finally, we further verified the network-based findings using three RNA-sequencing datasets generated from SARS-CoV-2 infected populations. We found that the overall pooled prevalence of stroke history was 2.98% (95% CI, 1.89-4.68; I 2=69.2%) in the COVID-19 population. Notably, the severe group had a higher prevalence of stroke (6.06%; 95% CI 3.80-9.52; I 2 = 42.6%) compare to the non-severe group (1.1%, 95% CI 0.72-1.71; I 2 = 0.0%). There were increased levels of CRP, PCT, and D-dimer in severe illness, and the pooled mean difference was 40.7 mg/L (95% CI, 24.3-57.1), 0.07 µg/L (95% CI, 0.04-0.10) and 0.63 mg/L (95% CI, 0.28-0.97), respectively. Vascular cell adhesion molecule 1 (VCAM-1), one of the leukocyte adhesion molecules, is suspected to play a vital role of SARS-CoV-2 mediated inflammatory responses. RNA-sequencing data analyses of the SARS-CoV-2 infected patients further revealed the relative importance of inflammatory responses in COVID-19-associated neurological manifestations. In summary, we identified an elevated vulnerability of those with a history of stroke to severe COVID-19 underlying inflammatory responses (i.e., VCAM-1) and procoagulant pathways, suggesting monotonic relationships, thus implicating causality.

8.
ChemRxiv ; 2020 Jul 02.
Article in English | MEDLINE | ID: covidwho-1027422

ABSTRACT

The global Coronavirus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of co-existing medical conditions while the underlying mechanisms remain unclear. Furthermore, there are no proven effective therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, diseases manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measure revealed underlying pathogenesis for broad COVID-19-associated manifestations. Multi-modal analyses of single-cell RNA-sequencing data showed that co-expression of ACE2 and TMPRSS2 was elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn's disease patients compared to uninflamed tissues, revealing shared pathobiology by COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicated that COVID-19 shared intermediate inflammatory endophenotypes with asthma (including IRAK3 and ADRB2). To prioritize potential treatment, we combined network-based prediction and propensity score (PS) matching observational study of 18,118 patients from a COVID-19 registry. We identified that melatonin (odds ratio (OR) = 0.36, 95% confidence interval (CI) 0.22-0.59) was associated with 64% reduced likelihood of a positive laboratory test result for SARS-CoV-2. Using PS-matching user active comparator design, melatonin was associated with 54% reduced likelihood of SARS-CoV-2 positive test result compared to angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors (OR = 0.46, 95% CI 0.24-0.86).

9.
Lancet Digit Health ; 2(12): e667-e676, 2020 12.
Article in English | MEDLINE | ID: covidwho-978471

ABSTRACT

Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use AI models in precision medicine, and as an example, how AI models can accelerate COVID-19 drug repurposing. Rapidly developing, powerful, and innovative AI and network medicine technologies can expedite therapeutic development. This Review provides a strong rationale for using AI-based assistive tools for drug repurposing medications for human disease, including during the COVID-19 pandemic.


Subject(s)
Artificial Intelligence , COVID-19 Drug Treatment , Drug Repositioning/methods , Algorithms , Antiviral Agents/therapeutic use , Drug Discovery/methods , Drug Therapy, Combination , Humans , SARS-CoV-2/drug effects , Treatment Outcome
10.
J Proteome Res ; 19(11): 4670-4677, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960278

ABSTRACT

The global pandemic of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the death of more than 675,000 worldwide and over 150,000 in the United States alone. However, there are currently no approved effective pharmacotherapies for COVID-19. Here, we combine homology modeling, molecular docking, molecular dynamics simulation, and binding affinity calculations to determine potential targets for toremifene, a selective estrogen receptor modulator which we have previously identified as a SARS-CoV-2 inhibitor. Our results indicate the possibility of inhibition of the spike glycoprotein by toremifene, responsible for aiding in fusion of the viral membrane with the cell membrane, via a perturbation to the fusion core. An interaction between the dimethylamine end of toremifene and residues Q954 and N955 in heptad repeat 1 (HR1) perturbs the structure, causing a shift from what is normally a long, helical region to short helices connected by unstructured regions. Additionally, we found a strong interaction between toremifene and the methyltransferase nonstructural protein (NSP) 14, which could be inhibitory to viral replication via its active site. These results suggest potential structural mechanisms for toremifene by blocking the spike protein and NSP14 of SARS-CoV-2, offering a drug candidate for COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Exoribonucleases , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus , Toremifene , Viral Nonstructural Proteins , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19 , Drug Repositioning , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Humans , Molecular Docking Simulation , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Toremifene/chemistry , Toremifene/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
11.
J Proteome Res ; 19(11): 4624-4636, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-960269

ABSTRACT

There have been more than 2.2 million confirmed cases and over 120 000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there is currently a lack of proven effective medications against COVID-19. Drug repurposing offers a promising route for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep-learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, proteins/genes, pathways, and expression from a large scientific corpus of 24 million PubMed publications. Using Amazon's AWS computing resources and a network-based, deep-learning framework, we identified 41 repurposable drugs (including dexamethasone, indomethacin, niclosamide, and toremifene) whose therapeutic associations with COVID-19 were validated by transcriptomic and proteomics data in SARS-CoV-2-infected human cells and data from ongoing clinical trials. Whereas this study by no means recommends specific drugs, it demonstrates a powerful deep-learning methodology to prioritize existing drugs for further investigation, which holds the potential to accelerate therapeutic development for COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections , Deep Learning , Drug Repositioning/methods , Pandemics , Pneumonia, Viral , Antiviral Agents , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Proteome , SARS-CoV-2 , Transcriptome
12.
PLoS Biol ; 18(11): e3000970, 2020 11.
Article in English | MEDLINE | ID: covidwho-914191

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and economic consequences. The risk of morbidity and mortality due to COVID-19 increases dramatically in the presence of coexisting medical conditions, while the underlying mechanisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19 therapies using network medicine methodologies along with clinical and multi-omics observations. We incorporate SARS-CoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into the human interactome. Network proximity measurement revealed underlying pathogenesis for broad COVID-19-associated disease manifestations. Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn disease patients compared to uninflamed tissues, revealing shared pathobiology between COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2). To prioritize potential treatments, we combined network-based prediction and a propensity score (PS) matching observational study of 26,779 individuals from a COVID-19 registry. We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56-0.91) is significantly associated with a 28% reduced likelihood of a positive laboratory test result for SARS-CoV-2 confirmed by reverse transcription-polymerase chain reaction assay. Using a PS matching user active comparator design, we determined that melatonin usage was associated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54-0.92) or angiotensin-converting enzyme inhibitors (OR = 0.69, 95% CI 0.52-0.90). Importantly, melatonin usage (OR = 0.48, 95% CI 0.31-0.75) is associated with a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking history, and various disease comorbidities using PS matching. In summary, this study presents an integrative network medicine platform for predicting disease manifestations associated with COVID-19 and identifying melatonin for potential prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Melatonin/administration & dosage , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Datasets as Topic , Host-Pathogen Interactions/genetics , Humans , Pandemics , Transcriptome
13.
EBioMedicine ; 58: 102907, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-704827

ABSTRACT

BACKGROUND: SARS-CoV-2 enters cells by binding of its spike protein to angiotensin-converting enzyme 2 (ACE2). Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) have been reported to increase ACE2 expression in animal models, and worse outcomes are reported in patients with co-morbidities commonly treated with these agents, leading to controversy during the COVID-19 pandemic over whether these drugs might be helpful or harmful. METHODS: Animal, in vitro and clinical data relevant to the biology of the renin-angiotensin system (RAS), its interaction with the kallikrein-kinin system (KKS) and SARS-CoV-2, and clinical studies were reviewed. FINDINGS AND INTERPRETATION: SARS-CoV-2 hijacks ACE2to invade and damage cells, downregulating ACE2, reducing its protective effects and exacerbating injurious Ang II effects. However, retrospective observational studies do not show higher risk of infection with ACEI or ARB use. Nevertheless, study of the RAS and KKS in the setting of coronaviral infection may yield therapeutic targets.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Kallikrein-Kinin System/drug effects , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Renin-Angiotensin System/drug effects , SARS-CoV-2
14.
BMC Med ; 18(1): 216, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-645453

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now been confirmed worldwide. Yet, COVID-19 is strangely and tragically selective. Morbidity and mortality due to COVID19 rise dramatically with age and co-existing health conditions, including cancer and cardiovascular diseases. Human genetic factors may contribute to the extremely high transmissibility of SARS-CoV-2 and to the relentlessly progressive disease observed in a small but significant proportion of infected individuals, but these factors are largely unknown. MAIN BODY: In this study, we investigated genetic susceptibility to COVID-19 by examining DNA polymorphisms in ACE2 and TMPRSS2 (two key host factors of SARS-CoV-2) from ~ 81,000 human genomes. We found unique genetic susceptibility across different populations in ACE2 and TMPRSS2. Specifically, ACE2 polymorphisms were found to be associated with cardiovascular and pulmonary conditions by altering the angiotensinogen-ACE2 interactions, such as p.Arg514Gly in the African/African-American population. Unique but prevalent polymorphisms (including p.Val160Met (rs12329760), an expression quantitative trait locus (eQTL)) in TMPRSS2, offer potential explanations for differential genetic susceptibility to COVID-19 as well as for risk factors, including those with cancer and the high-risk group of male patients. We further discussed that polymorphisms in ACE2 or TMPRSS2 could guide effective treatments (i.e., hydroxychloroquine and camostat) for COVID-19. CONCLUSION: This study suggested that ACE2 or TMPRSS2 DNA polymorphisms were likely associated with genetic susceptibility of COVID-19, which calls for a human genetics initiative for fighting the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/genetics , Genetic Predisposition to Disease , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus , Black People , COVID-19 , Coronavirus Infections/ethnology , Genetics, Population , Humans , Male , Pandemics , Pneumonia, Viral/ethnology , Polymorphism, Genetic , Quantitative Trait Loci , Risk Factors , SARS-CoV-2
15.
Cleve Clin J Med ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-623474

ABSTRACT

To date, there are no effective antiviral medications for COVID-19. Drug repurposing, a strategy that uses existing drugs, offers potential prevention and treatment options for COVID-19. We discuss one treatment strategy that combines anti-inflammatory (melatonin) and antiviral (toremifene) agents for patients infected with SARS-CoV-2 from network medicine-based findings. We also describe the pathobiology and immunologic characteristics of COVID-19 and highlight the rationale of combination drug treatment to rescue the pulmonary and cardiovascular conditions resulting from COVID-19. A preliminary analysis reveals a high potential for the synergistic effects of melatonin and toremifene to reduce viral infection and replication, and the aberrant host inflammatory responses, offering strong biologic plausibility as an effective therapy for COVID-19.

16.
Cell Discov ; 6: 14, 2020.
Article in English | MEDLINE | ID: covidwho-11098

ABSTRACT

Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "Complementary Exposure" pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL